Higher-order architecture of cell adhesion mediated by polymorphic synaptic adhesion molecules neurexin and neuroligin.

نویسندگان

  • Hiroki Tanaka
  • Naoyuki Miyazaki
  • Kyoko Matoba
  • Terukazu Nogi
  • Kenji Iwasaki
  • Junichi Takagi
چکیده

Polymorphic adhesion molecules neurexin and neuroligin (NL) mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca(2+), the ectodomain complex of neurexin-1 β isoform (Nrx1β) and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1β- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter.

Presynaptic and postsynaptic differentiation occurs at axodendritic contacts between CNS neurons. Synaptic adhesion mediated by synaptic cell adhesion molecule (SynCAM) and beta-neurexins/neuroligins triggers presynaptic differentiation. The signals that trigger postsynaptic differentiation are, however, unknown. Here we report that beta-neurexin expressed in nonneuronal cells induced postsynap...

متن کامل

RETRACTED: Imaging Activity-Dependent Regulation of Neurexin-Neuroligin Interactions Using trans-Synaptic Enzymatic Biotinylation

The functions of trans-synaptic adhesion molecules, such as neurexin and neuroligin, have been difficult to study due to the lack of methods to directly detect their binding in living neurons. Here, we use biotin labeling of intercellular contacts (BLINC), a method for imaging protein interactions based on interaction-dependent biotinylation of a peptide by E. coli biotin ligase, to visualize n...

متن کامل

Silencing of neuroligin function by postsynaptic neurexins.

The formation of neuronal circuits during development involves a combination of synapse stabilization and elimination events. Synaptic adhesion molecules are thought to play an important role in synaptogenesis, and several trans-synaptic adhesion systems that promote the formation and maturation of synapses have been identified. The neuroligin-neurexin complex is a heterophilic adhesion system ...

متن کامل

Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1

Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been un...

متن کامل

Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion

The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2012